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A Transfer Matrix Program to Calculate 
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We describe technical details on a new method of calculating the conductivity of 
random resistor networks which uses transfer matrix ideas. We give a program 
which calculates the conductivity of three-dimensional bars, and we provide a 
few comments  on the advantages of this method and its performances. 
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1. INTRODUCTION 

The problem of calculating the conductivity of random resistor networks by 
numerical means has motivated in the past a lot of efforts. Up to now the 
two main approaches which were used are the following: the resolution of 
Kirchoff's equations by relaxation methods (1-6) and techniques using the 
node elimination ideas. (6 10) The main advantage of the relaxation method 
is that the code is very simple. However it is time consuming and the 
convergence may be very slow. 

There exist several variants of the node elimination method. They 
usually consist in eliminating the dangling bonds and the disconnected 
clusters and then in transforming the network in a systematic way which 
reduces the number of resistors without changing the conductivity. The 
conductivity of a given sample is calculated exactly. However the code is 
rather sophisticated and the calculations remain time consuming. 
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The purpose of the present paper  is to publish technical details on a 
new method based on transfer matrix ideas. This method was used already 
in (~l't2) to  find estimates of the conductivity exponent t of a diluted 
network of resistors in dimensions two and three. Since we think that the 
same method can be applied to several other situations (random mixture of 
conducting and superconducting bonds, diffusion on a r andom lat- 
tice . . . .  ) we want here to publish a version of our complete program and 
give some comments which make it understandable. 

The main difference between our method and previous ones (J-~~ i s  
that the conductivity is calculated exactly at the same time as the lattice is 
constructed. 

We think that the method presented here to calculate the conductivity 
of random resistor networks has the following advantages: 

(a) The conductivity of a given sample is calculated exactly and the 
calculation never fails to converge. 

(b) We have used our method for strip or bar geometries. However it 
works also for systems finite in all directions (squares, cubes) and for higher 
dimensions. 

(c) The program does not require any library subroutine except a 
random number  generator. 

(d) It can be used for any distribution of random resistors. The fact 
that  some resistors are infinite, i.e., some bonds are missing can be used to 
speed up the calculations. However it is not at all an essential condition. In 
particular, we plan to use the same method to study the case of a random 
mixture of conducting and superconducting bonds. 

(e) We do not need to look for the geometrical properties of the 
conducting clusters. We do not need to worry about dangling bonds or 
isolated clusters as with other techniques. 

(f) We can calculate the conductivity of very long strips. Therefore 
we do not need to average the conductivity over several samples and so we 
avoid the usual problem of deciding how one should average the conductiv- 
ity. 

(g) We construct the lattice element by element and at each time that 
we add a new bond or site, we calculate immediately its contribution to the 
conductivity. Therefore we never need to store the whole lattice in the 
memory.  In this sense our method is analogous to that of Hoshen and 
Kopelman to count clusters. (13) 

2. THE A L G O R I T H M  

Let us now describe the algorithm that we use to calculate the 
conductivity. We shall describe here our algorithm in the two-dimensional 
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null resistor and random resistors 
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The strip is constructed bond by bond. At each time that we add a new resistor, the 
matrix A is modified. 

case. However the generalization to the three-dimensional case is very easy. 
We imagine our strip to be oriented horizontally, with a unit voltage 
applied vertically, and describe here the case of bond percolation. 

At each stage of the construction of our strip, we describe the left part  
of the strip by a matrix A which is a M • M matrix (if M is the number  of 
sites in a section, including the site of the first row and the site of the last 
row). The matrix A can be defined in the following way. (11) If we want to 
measure the electrical properties of the left part  of a strip, we can attach to 
each site of the section (sites 1,2, . . . ,  M)  a wire which imposes a voltage 
V~ on site a (see Fig. la  of the present paper and also Fig. 1 of Ref. 11). 
Then since the V~ are arbitrary, a current I/~ will flow in the wire attached 
to site ft. The problem is linear, therefore the currents Ip are linear 
functions of the voltages V~ : 

I/~= ~ A ~ V ~  (1) 
a 

Since the currents I/~ depend only o n  the differences between the V~, we 
can always choose V M = 0. The only thing we need to do is to write how 
the matrix A is transformed when one adds one new resistor. In two 
dimensions, there are two kinds of resistor one can add. 

If one adds an horizontal resistor R, on site a (see Fig. lb), then the 
matrix A becomes a new matrix A'. One can show that the matrix elements 
of the new matrix A'  are related to those of A by 

A i,~A ,~j R 
A~ = Aij 1 + A ~ R  (2) 
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Similarly, if one adds a vertical resistor R '  between the sites c~ and /~ of 
(Fig. lb), the matr ix  A'  becomes  a new matr ix  A "  given by 

(8 j - 8 ,j - 88 ,  ) 
i !  ! 

A~/ = A~ + R '  (3) 

where 8~ is Kronecker ' s  symbol  (8i, j = 1 if i = j and  6ij = 0 otherwise). 
We  can, at this stage, make  the following remarks.  
(a) The  first and  the Mth  horizontal  rows are infinitely conducting,  

thus for c~ = 1 or c~ = M, R = 0. Therefore,  for c~ = 1 and  M, equat ion (2) 
becomes  very simple: A~ = Aq, i.e., the matr ix  A remains unchanged.  

(b) The  matr ix  A is symmetr ic .  This can be used to make  the 
calculations shorter. However ,  the p rog ram given below does not  use this 
p roper ty  because it makes  the vectorizat ion of the p rog ram on the Cray  
more  difficult. 

(c) If for some c~ the e lement  A ~  = 0, this means  that  the site a is not 
connected  to any other  site of the section by the left par t  of the strip. 
Therefore  all the e lements  A~i = A~ = 0 for any i. So if A ~  = 0, equat ion 
(2) becomes  A~ = Aq independent  of the new bond  R. 

(d) All the bonds  (which are not  on the first or the Mth  horizontal  
rows) have  a resistance which is either 1 or m.  If the resistance R = 1, we 
have to use formulas  (2) and (3). I t  is clear that  if the resistance R is infinite 

n ! formula  (3) becomes  just  A~ = A 0 and therefore the matr ix  A remains  
unchanged.  In the case of equat ion (2), it becomes  for R = oe: 

A i~ A ,~j 
A'ij = AO A ~  (4) 

[see remark  (c) if A ~  = 0]. 
(e) W e  calculate the conduct ivi ty of a strip of length L for L >> 1. The  

conduct ivi ty  o per unit  length is given by 

A(1,  1) 
a = lim (5) 

L---~ ~ o  L 

This formula  can easily be unders tood:  to measure  the conduct ivi ty of the 
strip, we want  to calculate the current  which flows when one applies a 
voltage V on the first row and a voltage 0 on the Mth  row. Equat ion  (1) 
defines this current  as A (t ,  1) if a unit  voltage is applied to the topmost  row 
V l = 1 and  zero voltages everywhere else on the column L; i.e., V, = 0 for 
2 ~< i ~< M. This gives the conduct ivi ty  o in the limit L >> 1 since the fact 
that  we put  the sites 2 ~< i <~ M - 1 of co lumn L at voltage 0 gives just  a 
finite contr ibut ion to current  11, whereas the strip of length L gives a 
contr ibut ion to I i  which increases linearly with L for L >> 1. One could 
choose other bounda ry  condit ions at co lumn L like imposing the currents Ii 
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to be zero for the sites 2 < i < M - 1 .  This would  make  the p rog ram 
slightly longer  wi thout  changing  the results for large enough L. 

3. THE P R O G R A M  

In this section, we give the p r o g r a m  that  we have used to s tudy  the 
conduc t iv i ty  of r a n d o m  resistor  ne tworks  in three dimensions .  The  p rog ra m 
pub l i shed  here can be used as well on a C D C  Cyber  76 as on a Cray  1 or  a 

C y b e r  205. 

P R O G R A M  M A I N ( I N P U T ,  O U T P U T ,  T A P E 5  -- I N P U T ,  T A P E 6  
$ = O U T P U T )  

D I M E N S I O N  1(198,  198), V(198), NOC(198)  
C P A R A M E T E R S  

P R O  = .3117 
N =  14 
L = 200 
L I N I T  = L / 1 0  

L P R I N T  = L I N I T / 5  
N Y =  N 
N Z  = N 

W R I T E ( 6 ,  1000)NY, NZ,  PRO,  L, L I N I T  
1000 F O R M A T ( / / 2 1 5 ,  F 12.5, 2112/)  

C I N I T I A L I S A T I O N  
NZP1  -- N Z  + 1 
NS = N Y  * N Z  
NSP1 = N S  + 1 
NSP2  = NS + 2 
NBZP1 -- N Y * N Z P 1  + 1 
R I N I T  = 0. 
D O  10 U l  = 1 ,NSP2 
N O C ( K 1 )  -- 0 
D O  10 K2 = 1 ,NSP2 

10 A(K2,  K1) = 0. 
N O C ( I )  = 1 
N O C ( N S P 2 )  = 1 
C A L L  R A N S E T ( 1 )  

C S T A R T  O F  T H E  C A L C U L A T I O N  
D O  2 0 K L =  1,2 
N X  = ( K L  - 1) �9 L + (2 - K L )  �9 L I N I T  
J T E R  = 0 

D O  30 I T E R  = 1, N X  
J T E R  = J T E R  + 1 
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C A D D I T I O N  OF BONDS IN THE D I R E C T I O N  X 
DO 100 K3 = 2,NSP1 
NQ = NOC(K3) 
NOC(K3)  --= 0 
IF(RANF(K3) .LT.PRO)NOC(K3)  = 1 
D -- A(K3, K3) 
IF(D.LT.1.E - 8)GO TO 100 

NQ = NQ �9 NOC(K3) 

D = 1 . / (D + m q )  
DO 110 K2 = 1,NSP1 

110 V(K2) -- A(K2, K3) 
DO 120 K1 --- 1,NSPI 
D1 = A(K3, K1) 
IF(D1 * D1.LT.1.E - 16)GO TO 120 

D1 = DI  , D  
DO 130 K2 = 1,NSPI 

130 A(K2, K1) = A(K2, K1) - V(K2) �9 D1 
120 C O N T I N U E  
100 C O N T I N U E  
C A D D I T I O N  OF BONDS IN THE D I R E C T I O N  Y 

DO 200 J1 = 1,NY 
DO 210 J2 = 1,NZ 

K1 = J1 + N Y * 0 2 -  1) + 1 
IF(NOC(K1).EQ.0)GO TO 210 

K 2 = K 1  + 1 
IF(J1.EQ.NY)K2 = K2 - NY 
IF(NOC(K2).EQ.0)GO TO 210 
A(K1,K1)  = A(K1,K1)  + 1. 
A(K2, K1) = A(K2, K1) - 1. 
A(K2, K2) -- A(K2, K2) + 1. 
A(K1, K2) = A(KI ,  K2) - 1. 

210 C O N T I N U E  
200 C O N T I N U E  
C A D D I T I O N  OF BONDS IN THE D I R E C T I O N  Z 

DO 300 J l  = 2,NBZP1 
K2 = J1 
K1 = J l  - NY 
IF(K1 .LT. I )KI  = 1 
IF(NOC(K1).EQ.0)GO TO 300 
IF(K2.GT.NSP2)K2 = NSP2 
IF(NOC(K2).EQ.0)GO TO 300 
A(KI ,  K1) = A(K1, K1) + 1. 
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A(K2, K1) = A(K2, K1) - 1. 
A(K2, K2) = A(K2, K2) + 1. 
A(K 1, K2) = A(K 1, K2) - 1. 

300 C O N T I N U E  
IF(JTER.LT.LPRINT)GO TO 30 
JTER = 0 
IF(KL.EQ.1)GO TO 30 
SIGMA -- (A(1, 1 ) -RINIT) / ITER 
WRITE(6, 2000)NY, NZ, ITER, A(1, 1), SIGMA 

2000 FORMAT(215, 210, F17.7, F16.10) 
30 C O N T I N U E  

RINIT = A(1, 1) 
20 C O N T I N U E  

STOP 
END 

This version of the program calculates the conductivity of a bar of size 
N • N • L (see Fig. 2), in the case of site percolation. The algorithm aTnd 
the formulas are exactly the same as in the two-dimensional case which was 
described in Section 2. In particular all the remarks made in Section 2 
remain valid. 

The only differences are as follows: 
(a) The number M of the sites in the section is M = N 2 + 2. They are 

numbered as in Fig. 2. 

N --/ 

N=3 

Z 

[ ' I 

,~ 1.,. 1 

N , 2  

LX 

Fig. 2. A bar of size N • N • L. The sites of the section as numbered as in the program. 
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(b) We have to use formula (2) for all the bonds in the x direction 
and formula (3) for all the bonds in the y and z directions. 

The parameters of this version are (i) the concentration PRO of 
occupied sites (here PRO=0.3117) ,  (ii) the width N of the bar (here 
N = 14), and (iii) the length L of the bar (here L = 200). 

The size of the matrix A and the vectors V and NOC must be larger or 
equal to N 2 + 2 (here 198) where N is the bar width. 

To eliminate the boundary effect due to the beginning of the bar, we 
start our calculation after a length LINIT = L/10. We print 50 intermedi- 
ate results for the conductivity corresponding to bar lengths equal to 
L/50, 2L/50 ,  3 L / 5 0  . . . . .  50L/50.  

The random number generator is RANF,  which gives random num- 
bers equally distributed between 0 and 1. 

On the vector computers Cray 1 or Cyber 205, the innermost loop 130 
is vectorized by the automatic vectorizer included in the FORTRAN 
compiler, leading for both machines to a typical increase in speed over a 
CDC Cyber 76 by a factor of three at the percolation threshold. 

4. OUTER-LOOP VECTORIZATION FOR THE CDC CYBER 205 

Definitely a factor of 3 increase in speed obtained by use of the 
automatic vectorizer is not satisfactory. The reason for this small increase is 
obvious: within loop 120, too frequently loop 130 is jumped over, i.e., the 
vectorized inner loop is not dominant in execution time over the non- 
vectorized outer loop 120. In the case of the CDC Cyber 205 vector 
computer it is possible to use the advanced features of this machine to 
vectorize (by hand, these features will not be employed by the automatic 
vectorizer) the outer loop. To our knowledge this vectorization is much 
more difficult for the Cray 1, because of the absence of bit vectors and the 
compress instruction. 

The vectorized version of the loop 120 given below first collects row 
K3 of matrix A which is stored in nonconsecutive memory locations into a 
contiguous vector, D 1, by means of the G A T H E R  vectorinstruction. The 
expression X(I; N) denotes a vector of N elements, the first element being 
X(1). In the next step the elements of this vector D 1 are tested for their 
magnitude. It is important that this be done by means of forming the 
square and not using the absolute value function. The multiply operation is 
linked (chained) with the compare vector instruction by the compiler. This 
is not possible for the absolute value instruction in connection with the 
compare instruction. Therefore, this statement will be executed at an 
asymptotic rate for long vectors of 200 MFLOPS (Million Floating Point 
Operations per Second) on our 2-pipe machine. The result of the compare 
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is a bit vector, i.e., a vector of single bits being one where the magnitude of 
the corresponding D 1 element is sufficiently large to be operated with. In 
the next line all elements of the vector D 1 are multiplied with the constant 
D. In spite of involving more arithmetic operations than the scalar version 
this is much faster because of the vectorization. In the next statement the 
number of 1 bits in the bit vector is counted, another vector operation on 
the CDC Cyber 205 operating at an asymptotic rate of 800 MBIT/sec .  This 
is the number of times loop 120 actually should be executed and in general 
is much smaller than the maximum, NSP1. In the next statement the vector 
of integers INTS holding the numbers 1, 2 . . . . .  NSP1 is compressed on the 
bit vector IFNONZ. INTS is constructed once per program execution. The 
compress operation forms a vector INDEX holding the indices of the 
columns for which actually computations should take place, i.e., holding 
those values of K1 for which A (K3, K1) is sufficiently large in magnitude. 
The remaining loop 120 now is improved above the original loop 120 in two 
respects: (1) it runs only over the nontrivial cases, (2) it contains only the 
absolute minimum scalar code required to set up the trivially vectorized 130 
loop. 

One may use the very same techniques to vectorize the essential parts 
of 100 and 300 loops; the latter may in fact be vectorized completely. Also 
the random number generation may be vectorized using the method pub- 
lished previously by two of the authors. ( 14/ 

However, doing this results only in a speed increase of 10% which does 
not warrant a lengthy discussion here. The sparse vector instructions of the 
CDC Cyber 205 are not useful for the present problem since their purpose 
is to save memory space and not execution time. Memory space is not the 
crucial problem in the present study. 

120 

C OMMON D1(198), INTS(198), INDEX(198) 
BIT IFNONZ(198) 

DO 1 I =  1,198 
INTS(I) = I 

D 1(1; NSP 1) = Q8VGATHP(A(K3, 1 ; 1), 198, NSP 1 ; D 1 (1; NSP 1)) 
IFNONZ = DI(1 ;NSP1)*  DI(1;NSP1)  .GT. 1 . 0 E -  16 
DI(1;NSP1)  = D I ( 1 ; N S P 1 ) , D  
NLOOP = Q8 SCNT(IFNONZ( 1; NSP 1)) 
INDEXD = Q8VCMPRS(INTS(1; NSP1), IFNONZ(1; NSPl);  
INDEX(l ;  NSP1)) 
DO 120 KK1 = 1,NLOOP 
K1 = INDEX(KK1)  
A(1, K1; NSP1) = A(1, K1; NSPl)  - V(1; NSP1) * DI(K 1) 
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5. PERFORMANCES 

The two following curves give an idea of the program performances. 
The first curve (Fig. 3) gives the execution time as a function of the bar 

width N, at the percolation threshold (p = 0.3117). One sees on this log-log 
plot that the time increases like N 4. One sees that there is only a factor 3 
between the speed of the program on a Cray 1 and on a CDC Cyber 76, if 
vectorized by the automatic vectorizer. Using the advanced features of the 
Cyber 205 an additional factor 4 is achieved, i.e., one order of magnitude 
faster than the Cyber 76. For larger system sizes the speed advantage would 
be even larger. 

The second curve (Fig. 4) gives a comparison of the execution times 
for a bar of width 10 as a function of the concentration p of the occupied 
sites. The difference of speed increases with p. One can reach a factor near 
9 for p close to 1 with automatic vectorization and a factor 15, with the 
hand-made vectorization of Section 4 for the small system studied here. 
The fact that the times and the speed ratio depend on p can easily be 
understood. For small p, most of the bonds are missing and the simplifica- 
tion discussed in remark (d) of Section 2 occurs very often. On the 
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Fig. 3. The execution time as a function of the width N at the percolation threshold 
p = 0.3117 ( log-log plot). The length L = 1000. The time increases roughly as N 4 on the C D C  
Cyber 76 as well as on the Cray 1 and Cyber 205. For  the Cyber 205 the hand-optimized 
performance is given. Otherwise the performance is similar to that of the Cray l. 
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Fig. 4. The execution time as a function of the concentration of occupied sites for a bar of 
size 10 • 10 • 1000. The ratio of speeds increases withp, 

contrary, for p close to 1, most of the time is spent in using formula (2) 
which is vectorized on the Cray 1 or Cyber 205 already automatically. In 
the hand-optimized Cyber 205 version, the speed-up factor is largely 
independent of p and limited only by the small vector length. This again is 
obvious since the formerly scalar 120 loop, the execution of which hampers 
the small-p performance is now also vectorized. 

Let us just conclude by saying that we have used this program up to a 
bar width N = 24 and a length L = 130000 atpc = 0.3117, confirming the 
trends observed in Ref. 12. 
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